Sora Ease 指南:开发者掌握 Sora AI 的全面指南

Sora 中文的提示词 | 调教指南。各种场景使用指南。学习怎么让它听你的话。兼顾了 Sora 的多场景应用。 这篇文章来源于 https://github.com/SoraEase/sora-prompt-zh 开源项目,SoraEase 希望为 sora 相关的开发者提供自动化,便捷,快速上手的工具和指南。 Sora | 索拉 是一个AI模型,可以从OpenAI的文本指令中创建逼真和富有想象力的场景。OpenAI正在教AI理解和模拟运动中的物理世界,目标是训练模型,帮助人们解决需要现实世界交互的问题。 如果你是 sora 的学习者,希望获取到 sora 的最新的咨询和相关的开发项目,以及 sora 相关的开源项目,这里 awesome-sora 提供了 sora 相关的Sora 中文指南,指令指南,应用开发指南,精选资源清单,Sora 开发者精选工具框架。 索拉可提供以下功能: 文本到视频 动画 扩展生成的视频 视频到视频编辑 连接视频 图像生成(文本到图像) 在这个存储库中,你会发现各种可以和索拉一起使用的提示。我们根据视频的风格分配了不同的标签,让你可以根据标签快速找到提示示例(Prompt)和生成的视频,并根据需要进行修改。 虽然索拉尚未正式发布,但我们正在全面收集提示,以帮助你快速开始使用索拉生成您想要的视频。 提示词 官方提示词生成器 视频生成提示 官方视频生成提示 一位时尚女性穿着一件黑色皮夹克,一条长长的红色裙子和黑色靴子,手拿一个黑色的手提包,在热闹的东京街道上行走。周围充满了温暖的霓虹灯和动态的城市标识。她戴着太阳镜和红色口红,自信而随意地行走。街道潮湿而反光,形成了五彩灯光的镜面效果。许多行人在周围走动。 生成视频链接 几只巨大的长毛猛犸象漫步在积雪覆盖的草地上,它们的长毛在微风中轻轻飘动,远处是积雪覆盖的树木和戏剧性的雪山,午后的光线和稀薄的云彩以及高高悬挂的太阳形成了温暖的光芒。低角度的摄像视角令人惊叹,捕捉到了这些大型毛茸茸的哺乳动物和美丽的摄影,景深感非常强烈。 生成视频链接 一个电影预告片,讲述了一位30岁的太空人的冒险故事,他戴着一顶红色的羊毛编织头盔,蓝天,盐沙漠,电影风格,35mm胶片拍摄,色彩生动。 生成视频链接 无人机俯视着波涛汹涌的大苏尔加雷角海滩的崎岖悬崖。蓝色的海水拍打着,形成了白色的波浪,而夕阳的金光照亮了岩石海岸。远处有一座灯塔的小岛,悬崖边覆盖着绿色的灌木。从道路到海滩的陡峭下滑是一个戏剧性的壮举,悬崖边突出在海面上。这是一个捕捉到海岸的原始美和太平洋海岸公路崎岖风景的景色。 生成视频链接 动画场景展示了一个近距离的短毛怪兽跪在一个正在融化的红色蜡烛旁边。艺术风格是3D和逼真的,重点放在光线和纹理上。画面的情绪是惊奇和好奇,怪兽睁着大眼睛,张着大嘴盯着火焰看。它的姿势和表情传达出一种天真和俏皮的感觉,好像它是第一次探索周围的世界一样。温暖色调和戏剧性的光线进一步增强了图像的舒适氛围。 生成视频链接 一个华丽的纸艺世界,一个丰富多彩的珊瑚礁,到处都是色彩缤纷的鱼类和海洋生物。 生成视频链接 这个特写镜头展示了维多利亚皇冠鸽子引人注目的蓝色羽毛和红色胸膛。它的羽冠由精致的蕾丝羽毛制成,而它的眼睛是醒目的红色。鸟的头微微倾斜,给人一种威严和威严的印象。背景模糊,突出了鸟的引人注目的外观。...

March 14, 2024 · 2 分钟 · 250 字 · 熊新伟, 我

Sora 技术讨论以及普通人和开发者如何利用 Sora 改变世界

Sora !!! 近日,互联网上掀起了一阵关于Sora的热潮。作为OpenAI最新推出的技术,Sora赋予了文字生成视频的魔力,其展示的效果令人印象深刻。 在当前,短视频的吸引力已远超过传统的小说和图像漫画。因此,Sora的问世,可能会在视频制作领域引发一场革命。 Sora的魅力在于,它能够基于文本描述生成长达60秒的视频内容,这些内容包括了精细的场景设置、栩栩如生的角色表情,以及流畅的镜头转换。 这项技术能够塑造出多元化的角色,实现特定的动作,并且在主题和背景方面做到与描述高度一致。Sora不仅准确地理解用户的指令,还能深刻洞察这些元素在现实世界中应有的呈现方式。 Sora展现了对语言的深刻洞察力,能够精确捕捉用户的意图,创造出既生动又情感充沛的视频内容。它甚至能在同一视频中呈现多个场景,同时保证角色的连贯性和视觉风格的统一。 然而,Sora并非完美无瑕。在模拟复杂场景下的物理效应,以及理解特定因果关系方面,它仍有待提升。例如,视频中的角色可能会咬一口饼干,却未能在饼干上留下明显的痕迹。 此外,Sora在处理空间细节,如分辨方向,或是描述一段时间内的具体事件,如摄影机的移动轨迹时,也可能显示出一定的局限性。 简单来说,简单来说,Sora 是一种能用文本生成最长 60 秒视频的技术,也可以用来生成图片,因为图片本质上是一帧的视频。 这篇文章,将会从 Sora 的架构,然后到 Sora 的生态,以及最后普通人或者开发者如何利用或者使用 Sora ,为这个 AI 浪潮做准备 ~ Sora的架构与创新 Sora代表了在AI视频生成技术中的一次重大创新,它在架构上与之前的Runway及Stable Diffusion等基于扩散模型的系统有着明显的区别。核心之处在于Sora采用了Diffusion Transformer模型,这是一个结合了扩散模型和Transformer模型的先进架构,为视频生成带来了前所未有的灵活性和质量提升。 架构比较 Runway/Stable Diffusion:这些系统基于扩散模型,通过逐步向图片添加噪点,再逐步去除噪点的方式生成清晰图片。这一过程虽然能够生成高质量的图像,但在视频生成上存在限制,尤其是在处理长视频和维持视频一致性方面。 Sora:Sora利用Diffusion Transformer模型,通过Transformer的编码器-解码器架构处理含噪点的输入图像,并预测出更清晰的图像版本。这不仅提高了图像处理的效率,而且在视频生成上实现了显著的进步。Sora的创新在于它处理的基本单位不是文本的Token,而是视频的“Patch”,即随时间变化的色块,这允许Sora处理任何大小和长宽比的视频,无需预先裁剪或调整。 创新应用 Sora的架构使其能够在训练时使用更多的数据和计算资源,得到更高质量的输出。这种方法不仅避免了视频预处理可能导致的原始构图丢失问题,而且因为能够接收任何视频作为训练输入,Sora的输出不会受到训练输入构图不良的影响。此外,Sora展示了模拟复杂物理现象(如液体动力学)的能力,这得益于其在训练时使用的大量视频数据中包含的物理规则。 研究基础与启示 Sora的开发受到了《Scalable Diffusion Models with Transformers》和《Patch n' Pack: NaViT, a Vision Transformer for any Aspect Ratio and Resolution》两篇论文的启发,这些研究来自Google,并在Sora项目启动后不久发表。这些研究提供了Sora架构的理论基础和技术细节,为Sora及未来AI视频生成技术的发展奠定了坚实的基础。 通过结合扩散模型和Transformer模型,Sora不仅在技术上实现了突破,而且为视频制作和AI应用开辟了新的可能性,预示着AI在影视制作、内容创作等领域的未来将更加广阔和深入。 Sora 和之前的 AI 视频生成工具有什么升级 Sora在AI视频生成领域的出现,标志着技术进步的一个重要里程碑。与早期的AI视频生成工具相比,Sora引入了一系列创新和升级,这些改进不仅提高了视频的生成质量,而且极大地扩展了视频创作的可能性。以下是Sora与之前AI视频生成工具的主要升级和优化: 提升生成视频的质量和稳定性 Sora的技术进步主要体现在能够生成高质量视频的能力上。与之前的工具相比,Sora生成的视频可以达到长达60秒的长度,同时支持镜头切换、确保画面中的人物和背景的稳定性,以及实现高画质输出。这些改进意味着使用Sora生成的视频更加逼真,观看体验更佳,为用户提供了更为丰富和动态的视觉内容。 创新的技术架构:Diffusion Transformer模型 Sora之所以能够实现上述优势,归功于其基于Diffusion Transformer模型的创新技术架构。这一架构融合了扩散模型和Transformer模型的优点,使Sora不仅能够生成文本内容,而且能够预测生成所谓的“时空补丁”。这些时空补丁可以理解为视频中的一个小片段,包含了几帧视频内容。这种方法使得Sora在训练过程中不受视频长度和显卡性能的限制,生成过程更加灵活多样,能够组合不同的时空补丁来创造出新的视频内容。 灵活性和多样性的增强 与基于Diffusion模型的Pika或基于Transformer模型的LLM和ChatGPT等工具相比,Sora的技术架构赋予了它更高的灵活性和多样性。Pika在处理视频内容时受到显卡性能的限制,而且主要模式集中在基于图片关键帧的视频扩展或风格转换上。Sora则通过其独特的模型,能够无需拘泥于特定的视频分辨率或长度限制,创造出更加丰富和多变的视频内容。 Sora 的算力要求 在讨论Sora的使用成本和算力要求之前,我们需要明白AI视频生成技术特别是像Sora这样的先进模型,其成本和算力需求是由多种因素决定的。这些因素包括但不限于模型的复杂度、生成内容的分辨率、视频的长度、以及所需的生成质量。以下是对Sora使用成本和算力要求的一个专业化和详细的分析。...

February 24, 2024 · 2 分钟 · 221 字 · 熊新伟, 我