LangGraph 深度解析:设计、架构、原理与应用
本项目是一个持续的过程,以日拱一卒的态度去学习 AI 开源项目,通过实践真实项目,结合 AI 工具,提升解决复杂问题的能力。并且记录。 notion List I. LangGraph 简介 A. 定义 LangGraph:目标、愿景与核心价值主张 LangGraph 是由 LangChain Inc. 开发的一个底层编排框架,旨在利用大型语言模型(LLMs)构建有状态、多参与者的应用程序,特别是智能体(Agent)和多智能体工作流 1。其核心目标是为复杂的 AI 智能体任务提供可靠性、可控性和可扩展性 2。众多知名公司,如 Klarna、Elastic、Uber、Replit、LinkedIn 和 GitLab,已在生产环境中使用 LangGraph,证明了其可行性和价值 2。 LangGraph 的一个关键特性是它专注于支持循环图结构。这与许多传统 LLM 链(通常构建为有向无环图 - DAGs)不同 8。这种循环能力对于实现智能体行为至关重要,这些行为通常涉及循环、重试和基于动态决策的路径选择。LangGraph 采用 MIT 开源许可证发布,允许社区自由使用和贡献 3。 LangGraph 的出现,可以看作是 LLM 开发社区(特别是 LangChain Inc.)认识到简单线性链(例如主要由 LangChain 表达式语言 - LCEL 构建的链)不足以满足现代 AI 智能体日益增长的复杂性、动态性和状态依赖性需求的一种体现。早期的 LLM 应用主要集中在单次生成或简单的链式调用。随着人们期望构建能够执行多步骤任务、使用工具并进行交互的自主智能体,对循环(如重试、规划周期)、状态持久化(记忆、上下文)和条件逻辑的需求变得至关重要 6。主要设计用于 DAG 的 LCEL 在处理这些固有的循环和状态模式时显得力不从心 22。LangGraph 通过其明确的图/状态/节点/边模型 12 以及持久化和条件边等特性 12,直接解决了在实践中遇到的这些限制,其核心特性正是为了克服早期范式在构建复杂智能体时遇到的瓶颈而量身定制的。 B. 在 LangChain 生态系统中的定位 LangGraph 是 LangChain 生态系统的一个扩展或模块 2,通常与 LangChain 的组件一起使用,但也可以独立运行 2。它与 LangChain(提供组件/接口、用于简单链/检索流程的框架)和 LangSmith(用于可观察性、调试和评估的平台)的角色不同 2。LangGraph 专注于复杂、有状态流程的编排。...