利用 LangChain 框架的语言模型应用:开发者指南

什么是Langchain? LangChain 为开发者提供了一个强大的框架,用于快速构建和部署复杂的基于语言模型的应用程序,满足了需要集成多种语言处理功能至一体化解决方案的需求。 LangChain 的 PMF: 核心用户和使用场景:LangChain 设计用于简化使用语言模型进行应用开发的过程。它特别适合于需要将多个语言技术集成到一起的开发者和企业,例如集成聊天机器人、自动内容生成工具等。 市场需求:随着 AI 和机器学习技术的发展,市场上对于能够简化和加速语言模型应用开发的工具的需求持续增长。LangChain 通过提供一个结构化的方式来组合不同的语言能力(如理解、生成、概括等),满足了这一需求。 竞争优势:LangChain 的优势可能在于其框架的灵活性和扩展性。对开发者而言,这意味着可以用较少的代码实现更复杂的语言处理任务,这是其吸引用户的一个关键因素。 用户反馈和市场接受程度:衡量 PMF 的一个重要方面是用户的反馈和产品的市场接受程度。如果 LangChain 的用户基础持续增长,且用户反馈积极,那么可以认为它在实现良好的产品市场契合度方面是成功的。 LangChain简化了LLM应用程序生命周期的每个阶段: 开发:使用 LangChain 的开源构建块和组件构建您的应用程序。使用第三方集成和模板开始运行。 生产化:使用 LangSmith 检查、监控和评估您的链,以便您可以充满信心地持续优化和部署。 部署:使用 LangServe 将任何链转变为 API。 langchain 框架组成 具体来说,该框架由以下开源库组成: langchain-core :基础抽象和LangChain表达式语言。 langchain-community :第三方集成。 合作伙伴包(例如 langchain-openai 、 langchain-anthropic 等):一些集成已进一步拆分为自己的轻量级包,仅依赖于 langchain-core 。 langchain :构成应用程序认知架构的链、代理和检索策略。 langgraph:通过将步骤建模为图中的边和节点,使用 LLMs 构建健壮且有状态的多角色应用程序。 langserve:将 LangChain 链部署为 REST API。 更广泛的生态系统:...

May 22, 2024 · 27 分钟 · 5663 字 · 熊鑫伟, 我

探索大型语言模型(llm):人工智能在理解与生成人类语言方面的先锋

大语言模型简介 大语言模型(LLM,Large Language Model),也称大型语言模型,是一种旨在理解和生成人类语言的人工智能模型。 LLM 通常指包含数百亿(或更多)参数的语言模型,它们在海量的文本数据上进行训练,从而获得对语言深层次的理解。目前,国外的知名 LLM 有 GPT-3.5、GPT-4、PaLM、Claude 和 LLaMA 等,国内的有文心一言、讯飞星火、通义千问、ChatGLM、百川等。 为了探索性能的极限,许多研究人员开始训练越来越庞大的语言模型,例如拥有 1750 亿参数的 GPT-3 和 5400 亿参数的 PaLM 。尽管这些大型语言模型与小型语言模型(例如 3.3 亿参数的 BERT 和 15 亿参数的 GPT-2)使用相似的架构和预训练任务,但它们展现出截然不同的能力,尤其在解决复杂任务时表现出了惊人的潜力,这被称为“涌现能力”。以 GPT-3 和 GPT-2 为例,GPT-3 可以通过学习上下文来解决少样本任务,而 GPT-2 在这方面表现较差。因此,科研界给这些庞大的语言模型起了个名字,称之为“大语言模型(LLM)”。LLM 的一个杰出应用就是 ChatGPT ,它是 GPT 系列 LLM 用于与人类对话式应用的大胆尝试,展现出了非常流畅和自然的表现。 LLM 的发展历程 语言建模的研究可以追溯到20 世纪 90 年代,当时的研究主要集中在采用统计学习方法来预测词汇,通过分析前面的词汇来预测下一个词汇。但在理解复杂语言规则方面存在一定局限性。 随后,研究人员不断尝试改进,2003 年深度学习先驱 Bengio 在他的经典论文 《A Neural Probabilistic Language Model》中,首次将深度学习的思想融入到语言模型中。强大的神经网络模型,相当于为计算机提供了强大的"大脑"来理解语言,让模型可以更好地捕捉和理解语言中的复杂关系。 2018 年左右,Transformer 架构的神经网络模型开始崭露头角。通过大量文本数据训练这些模型,使它们能够通过阅读大量文本来深入理解语言规则和模式,就像让计算机阅读整个互联网一样,对语言有了更深刻的理解,极大地提升了模型在各种自然语言处理任务上的表现。 与此同时,研究人员发现,随着语言模型规模的扩大(增加模型大小或使用更多数据),模型展现出了一些惊人的能力,在各种任务中的表现均显著提升。这一发现标志着大型语言模型(LLM)时代的开启。 LLM 的能力 涌现能力(emergent abilities) 区分大语言模型(LLM)与以前的预训练语言模型(PLM)最显著的特征之一是它们的 涌现能力 。涌现能力是一种令人惊讶的能力,它在小型模型中不明显,但在大型模型中特别突出。类似物理学中的相变现象,涌现能力就像是模型性能随着规模增大而迅速提升,超过了随机水平,也就是我们常说的量变引起质变。 涌现能力可以与某些复杂任务有关,但我们更关注的是其通用能力。接下来,我们简要介绍三个 LLM 典型的涌现能力:...

May 15, 2024 · 30 分钟 · 6220 字 · 熊鑫伟, 我